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Augis and Bennett (J. Thermal Anal. 13 (1978) 283.) [6] recently proposed a modified 
Kissinger method for determining the activation energy of a transformation. It is shown 
that the proposed method was, in fact, based upon a modification to the equation for 
the rate of reaction under non-isothermal conditions. The apparent discrepancy be- 
tween the proposed method and the original Kissinger method is therefore resolved. 
The modified rate equation appears to have, at best, only a limited application. How- 
ever, if the equation should be appropriate for a particular transformation, it is dem- 
onstrated that Augis and Bennett's method would be the correct method for determin- 
ing the activation energy. 

The so-called peak-displacement or Kissinger [1] method of quantitative thermal 
analysis has often been used to determine the activation energies of the rate con- 
trolling processes for solid state transformations. The method involves the mea- 
surement of the temperature Tin, corresponding to the maximum rate of reaction 
during heating from an initial temperature To, at a constant heating rate, r. The 
temperature T,, can be equated to the maximum of an exothermic DTA peak i f  
the specimen is in good thermal contact with the rest of the thermal analysis system 
[2]. If  the thermal contact is poor it is necessary to relate the fraction transformed, 
x, to the observed differential temperature, 6T, by means of a calibration constant. 
This constant may involve a linear [3, 4] or a quadratic [5] expression for x in 
terms of 6T. The activation energy Q, for Q/RT m >> 1 where R is the gas constant, 
is given by d[ln(r/T~ )]d(I/Tm)which is the gradient of the straight line obtained 
on plotting In (r/TZm) versus 1/T,,. 

In a recent paper, Augis and Bennett [6] proposed that Q should be calculated 
by plotting In [r/(T,,- To) ] versus 1/T~ for Q(T m -  To)/RT ~ >> 1. In the limiting case o f  
small T~ (i.e. (T,~ - T~)/Tm ~ 1) there would seem to be serious discrepancy be- 
tween the Augis-Bennet t  procedure and the conventional Kissinger procedure. 
The present communication will demonstrate that the discrepancy is an apparent 
one which arises because of differences in the assumed expression for the instan- 
taneous rate of reaction under non-isothermal conditions. Having clarified this 
fundamental point it will be shown that the Augis-Bennet t  analysis contains 
important errors but that in spite of these errors, their proposed procedure is 
nonetheless correct for the assumed reaction rate law. 
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Analysis 

Consider first the conventional Kissinger method, the theoretical basis of which 
has been reviewed recently by Henderson [2] and others [7, 8]. These various 
authors have shown that the method gives a reasonably accurate estimate of the 
activation energy for a single, thermally activated process provided dx/dt is given 
by a generalized rate expression of the form: 

dx/dt = f(x)g(T) (1) 

where dx/dt is the instantaneous rate of  change with time of the fraction trans- 
formed, under non-isothermal conditions, and is a product of separate functions, 
f(x) and g(T), of x and T. Integrating Eq. (1) from x = 0 to x ~- X,n yields: 

Xm Tra 

~ ;-~XX) - h(Xm) say = l  f g(T)dT 
0 To 

(2) 

where x m is the fraction transformed at Tin. If it can be shown that h(xm) is inde- 
pendent of r O.e., the fraction transformed at Tm is the same for all linear heating 
rates), we can evaluate Q by integrating an assumed expression for the rate func- 
tion, g(T). The usual assumption [2, 7, 8] is that g(T) is given by an Arrhenius 
equation of the form: 

g(T) = k exp ( -  Q/RT) (3) 

where k is a frequency factor. Hence, for a sufficiently small T o and Q/RT>> 1 it 
can be shown [9, 10] that: 

Tm 

h(xm) = (k/r) ~ exp (-Q/RT)dT ~ (RT2mk/rQ)exp ( - Q / R T )  
To 

(4) 

where the asymptopic expansion for the exponential-integral function has been 
cut off at the first term. Thus, if h(x,~) is independent of the heating rate, Q can be 
estimated by plotting ln(r/T 2) versus 1~Tin. 

That the temperature Tm corresponds to equal fractions transformed can be 
demonstrated as follows: a maximum requires d2x/dt 2 = 0 so from Eq. (I) we 
have, 

df(xm) r dg(T) 
d ~  + [g(T)] 2 dT -- 0.  (5) 

Using Eq. (3) and Eq. (4) it can be demonstrated that this condition corresponds to: 

d f ( X m )  1 
d---~ + ~ ~ 0 .  (6) 
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Equation (6) is in xm only so its solution is independent of the heating rate and the 
maxima at T m correspond to equal fractions transformed. 

Consider, on the other hand, the Augis -Bennet t  analysis. In this case, it is 
observed that Eq. (8) of Augis and Bennett's paper reads as follows: 

dx/dt = (du/dt)n u ' - l (1  - x) (7) 

where n is the rate exponent appearing in the Avrami equation for isothermal 
transformation: 

x = 1 - exp [ - ( K t ) ' ]  (8) 
and 

u = Kt = tk exp ( - Q / R T ) .  (9) 

Equation (7) for the non-isothermal rate of reaction can be rewritten by noting that: 

du/dt = k exp ( -Q/RT)[1  + rQt/RT z] 

= k exp ( -Q/RT)[1  + Q ( T -  To)/RT 2] (10) 

where (T - To) = ft. Substituting for du/dt Eq. 10 and for u using Eqs (8) and (9) 
shows that Eq. (7) becomes: 

n--1 

dx/dt = n [ - l n ( 1  - x)] " (1 - x)k[1 + Q ( T -  To)/RT2]exp(-Q/RT).  (11) 

This is an equation in x and T such that Augis and Bennett's generalized rate 
functions f (x )  and g(T), for non-isothermal transformation are given by: 

g(T) = k[1 + Q ( T -  To)/RT2]exp(-Q/RT) (12) 
n--1 

f (x )  = n [ - ln (1  - x)] , (1 - x) (13) 

Clearly, for Q(T - To)/RT z ,~ 1, Eq. (12) reduces to: 

g(T) = k exp ( -Q/RT)  (14a) 

and for Q(T - To)/RT 2 >> 1, we have 

g(T) = k[Q(T - To)/RT 2] exp ( - Q / R T )  

= (kQ/RT)exp ( - Q / R T )  for T O = 0.  (14b) 

It is therefore not unsurprising that for To = 0 and Q/RT >> 1 there is an apparent 
conflict between the results of Augis and Bennett's analysis and the results of ear- 
lier analyses [2, 7, 8] of the Kissinger method. The latter were based on the use of  
an Arrhenius rate function (Eq. 14a) as opposed to Augis and Bennett's modified 
expression (Eq. 14b) for g(T). 

Turning now to the details of the analysis presented by Augis and Bennett, it is 
noted that these authors did not follow the usual scheme for determining the con- 
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ditions to be satisfied at T m. Instead, they evaluated the first term appearing in Eq. 
(5) by differentiating Eq. (13) to give df(x)/dx and substituting for x m using Avrami's 
isothermal transformation law (Eq. 8). This is an invalid approach because the 
Avrami law cannot be used to estimate Xm during non-isothermal transformations. 

A valid analysis for Augis and Bennett's modified rate law (Eq. 11) can be carried 
out by employing the approach described earlier for the Kissinger method. How- 
ever, before performing this analysis, it should be pointed out that Augis and Ben- 
nett's paper contains a mathematical mistake wherein the expression for d2u/dt ~ 
(page 285 of their paper) should include the following additional term: 

-u(2ar/T) 

where the parameter a is equal to Qr/RT 2. It is important to emphasise that the 
incorporation of this term does not rectify Augis and Bennett's analysis but merely 
corrects a mathematical error. 

Adopting the procedure outlined above for the Kissinger method, we note that 
Augis and Bennett's rate function (Eq. 12) for T O = 0 can be integrated and substi- 
tuted in Eq. 2 to give: 

Tm 
h(x•) = (k/r) S (1 + Q/RT)exp( -Q/RT)d tT~  (Tmk/r)exp(-a/RTm) (15) 

0 

for Q/RT >> 1. This integral has been evaluated using (9), 

; ( e ~ / x ) d x  ~ e - ~ [ x  - 2  - x - 1 ]  for x >> 1.  
--oo 

Moreover, by substituting Eq. (12) for g(T) in Eq. (5), the condition for a maximum, 
where T o = 0 becomes: 

df(x~) r(Q/ RTm) 2 
- - +  = 0 .  

dx k(1 + Q/RTm) 2 T m exp ( -  Q/RT, n) 

Hence, for Q/RTm >> 1, we have 

d f ( X m )  r d f ( x m )  1 
d ~  + Tmkexp(-Q/RTm) "~dx--x + h(~m) ~ 0 .  (16) 

The solution to Eq. 16 is independent of r and to the approximation implicit in 
Eq. 15, the maxima at T m correspond to equal fractions transformed. Hence, we 
can use Eq. 15 to estimate Q by plotting ln(r/Tm) versus 1/Tm. Consequently, the 
In(r/T,,) plot (for Q/RT,, >> 1 and T O = 0) proposed by Augis and Bennett is 
indeed the correct method for estimating the activation energy, for their assumed 
rate expression. 
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Discussion 

In the preceding analysis it has been shown that the conventional Kissinger 
method and the modified method of Augis and Bennett [2] can be reconciled if it 
is appreciated that the two methods are based upon different expressions for the 
rate function, g(T), appearing in rate equation for transformation under non- 
isothermal conditions (Eq. 1). The theoretical basis for the equation has been con- 
sidered recently by Henderson [2, 11 ] and by Gorbachev [121. These authors point- 
ed out that the equation is applicable to a limited number of transformations such 
as those involving site saturation (zero nucleation rate) with linear growth kinetics 
(growth rate independent of time). The equation may also be used as an approxi- 
mation for those cases which do conform to the criteria specified by Henderson 
[2, 11 ]. It is also legitimate to replace the Arrhenius rate function, 9(7"), by some 
other function of T which describes the reaction rate. For example, the rate of 
crystallization of a glass can often be described in terms of a Fulcher expression for 
the rate constant (i.e., g(T) = exp[-Q/R(T- T*)] where T* is a constant). It is 
relevant to note, however, that in the numerous reports dealing with measurements 
of kinetic parameters for solid-state transformations, there appears to have been 
no mention made of a parameter which is proportional to Augis and Bennett's 
modified rate function, g(T)= k(1 + Q/RT) exp (-Q/RT). Consequently, the 
adoption of a thermal analysis method based on this function must be expected 
to be inappropriate for the vast majority of solid-state transformations. 

Conclusion 

1. A modification made by Augis and Bennett to the Kissinger, or peak-dis- 
placement, method of quantitative thermal analysis was based upon the use of a 
non-Arrhenius expression for the rate function appearing in the rate equation for 
transformation under non-isothermal conditions. 

2. The adoption of the modified rate function means that the peak-displacement 
method can be used to estimate the activation energy, Q, for large Q/RTm provided 
ln(r/Tm) is plotted as a function of 1/Tm. The parameters appearing in these terms 
are Tm, the temperature corresponding to the maximum rate of reaction; r, the 
linear heating rate; and R, the gas constant. 

3. Augis and Bennett's proposed rate function, and their modified method, have 
only a limited application in the measurement of reaction rate parameters for 
solid-state transformations. 

The author is indebted to the Senate of the University of Queensland for the award of 
a University Research Fellowship; and to Professor R. R. Stephens for providing laboratory 
facilities. 
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ZUSAMMENFASSUNG- Von Augis und Bennett  (J. Thermal Anal. 13, (1978) 283) wurde eine 
modifizierte Kissinger-Methode zur Bestimmung der Aktivierungsenergie einer Umwandlung 
vorgesehlagen. Es wird gezeigt, dass die vorgeschlagene Methode tats/iehlich in einer Modi- 
fizierung der Gleichung ftir die Reaktionsgeschwindigkeit unter  nicht-isothermen Bedingun- 
gen ihren Ursprung hat. Die scheinbare Diskrepanz zwischen der vorgeschlagenen Methode 
und der urspriinglichen Kissinger-Methode wird dadurch behoben. Die modifizierte Ge- 
schwindigkeitsgleichung hat  bestenfalls nu t  eine begrenzte Anwendung.  Jedoch, bei Eignung 
dieser Gleichung fiir eine bestimmte Umwandlung zeigt sich, dass die Methode yon Augis und 
Bennett  die richtige Methode zur Best immung der Aktivierungsenergie sein kann.  

Pe3ioMe - -  Ornc n 13ermexr (J. Thermal Anal. 13 (1978) 283.) HeRaBHO npeRno~HsIa Br~lo- 
n3raeHei~I~ Mexo~l KaccHn~lmepa RJm onpe~enerii~ arieprnrr arTm3attrm raroro-Jm6o npeBpa- 
nleHnn. IIo~a3ario, '~TO npejInomeHrmn~ MeTO~I, B ne~cxBaTesmnOCTa, OCHOBaH na B/I/IOI13Me- 
~IeHrIoM ypa~nerirm CI~OpOCTH pea~trm~ B HeH3oTepMrNecIoa'X yCJIOB~X. CJxe~IOBaTeYJ~HO, pa3pe- 
meno xamynleeca npoTI~BopeqJ~e Me:~c~Iy npe~lnomenIar, IM MeTOROM ~ no~i.aniaHblM MeTOjIOM 
Knccnmxmepa. Ka~eTcn, ~TO Br~ROH3MerIeHI-ioe ypaBHenrre eropocT~, B ~ymi~eM eny~ae, Mo~eT 
rrMexr~ xosmI~O orparm~enaoe 3i~a,~en~te. l-Iora3ano, '~TO ecsrrt ypa~i~eri~e npe)lI~a3ria'~eHo ~lJIn cne- 
traqbanecroro npeBpamemu~, TO MeTO~ Orrtca r~ BermexTa MOTI(eT 6t,ITB xoppeI(TH~,I~ MeTOjIOM 
~!JU~ onpe)leneim~ aHeprrr~ arTrmatt~rL 
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